이 예제는 맞춤 요소 v1 사양을 준수하도록 업데이트되었습니다. 이전 예제는 참조용으로 제공됩니다.
구성요소를 생성하는 방법을 이해하는 가장 좋은 방법 중 하나는 예제를 통해 생성 과정을 확인하는 것입니다.
아래에 JSON 메니페스트 파일과 두 개의 자바스크립트 파일(맞춤 요소를 위한 파일과 코드를 생성하기 위한 파일)이 들어 있는 간단한 QR 코드 생성기를 준비해 두었습니다. 맞춤 구성요소 예제를 .zip 파일로 다운로드합니다. .zip 파일에는 다음 세 개의 파일이 있습니다.
- myqrcode.js - QR 코드 생성기의 맞춤 요소 .zip 파일에는 아래 코드와는 다른, 이 파일의 ES5 호환 버전이 포함되어 있습니다.
- manifest.json - 구성요소의 JSON 메니페스트
- qr.js- QR 코드를 생성하는 자바스크립트
또한 아래에서 맞춤 요소, 메니페스트 파일 및 QR 코드 생성기를 검사할 수도 있습니다.
myqrcode.jsQR 코드는 다음 자바스크립트를 사용하여 맞춤 요소를 생성합니다. 맞춤 요소를 위한 자바스크립트를 다운로드합니다.
/** @fileoverview Implementation of the my-qrcode component. */ if (window.customElements && window.customElements.define) { class MyQrcode extends HTMLElement { constructor() { super(); this.img = null; } connectedCallback() { this.generateImage(); } static get observedAttributes() { return ['data']; } attributeChangedCallback(attributeName) { if (!this.img) { return; } switch (attributeName) { case 'data': this.generateImage(); break; } } generateImage() { const data = this.getAttribute('data'); if (data) { if (!this.img) { this.img = document.createElement('img'); this.img.style.height = '100%'; this.appendChild(this.img); } this.img.setAttribute('src', QRCode.generatePNG(data)); } } } customElements.define('my-qrcode', MyQrcode); }
다음은 QR 코드 생성기의 JSON 메니페스트 파일로, 구성요소 JSON 메니페스트 형식을 따릅니다. JSON 매니페스트 예제를 다운로드합니다.
{
"name": "QR Code",
"type": "my-qrcode",
"tagName": "my-qrcode",
"version": 2,
"customElementsVersion": 1,
"description": "Generates a QR code image for the specified data.",
"files": {
"js": [
"qr.js",
"myqrcode.js"
]
},
"attributes": [
{
"name": "data",
"label": "Data",
"type": "string",
"required": true,
"description": "The data to encode in the QR code image"
}
],
"events": [
],
"methods": [
],
"nestable": false
}
다음은 QR 코드를 생성하는 자바스크립트입니다. 구성요소 JSON 매니페스트에서 참조됩니다. QR 코드 생성을 위한 코드를 다운로드합니다.
/* qr.js -- QR code generator in Javascript (revision 2011-01-19)
* Written by Kang Seonghoon <[email protected]>.
*
* This source code is in the public domain; if your jurisdiction does not
* recognize the public domain the terms of Creative Commons CC0 license
* apply. In the other words, you can always do what you want.
*/
var QRCode = (function(){
/* Quick overview: QR code composed of 2D array of modules (a rectangular
* area that conveys one bit of information); some modules are fixed to help
* the recognition of the code, and remaining data modules are further divided
* into 8-bit code words which are augumented by Reed-Solomon error correcting
* codes (ECC). There could be multiple ECCs, in the case the code is so large
* that it is helpful to split the raw data into several chunks.
*
* The number of modules is determined by the code's "version", ranging from 1
* (21x21) to 40 (177x177). How many ECC bits are used is determined by the
* ECC level (L/M/Q/H). The number and size (and thus the order of generator
* polynomial) of ECCs depend to the version and ECC level.
*/
// per-version information (cf. JIS X 0510:2004 pp. 30--36, 71)
//
// [0]: the degree of generator polynomial by ECC levels
// [1]: # of code blocks by ECC levels
// [2]: left-top positions of alignment patterns
//
// the number in this table (in particular, [0]) does not exactly match with
// the numbers in the specficiation. see augumenteccs below for the reason.
var VERSIONS = [
null,
[[10, 7,17,13], [ 1, 1, 1, 1], []],
[[16,10,28,22], [ 1, 1, 1, 1], [4,16]],
[[26,15,22,18], [ 1, 1, 2, 2], [4,20]],
[[18,20,16,26], [ 2, 1, 4, 2], [4,24]],
[[24,26,22,18], [ 2, 1, 4, 4], [4,28]],
[[16,18,28,24], [ 4, 2, 4, 4], [4,32]],
[[18,20,26,18], [ 4, 2, 5, 6], [4,20,36]],
[[22,24,26,22], [ 4, 2, 6, 6], [4,22,40]],
[[22,30,24,20], [ 5, 2, 8, 8], [4,24,44]],
[[26,18,28,24], [ 5, 4, 8, 8], [4,26,48]],
[[30,20,24,28], [ 5, 4,11, 8], [4,28,52]],
[[22,24,28,26], [ 8, 4,11,10], [4,30,56]],
[[22,26,22,24], [ 9, 4,16,12], [4,32,60]],
[[24,30,24,20], [ 9, 4,16,16], [4,24,44,64]],
[[24,22,24,30], [10, 6,18,12], [4,24,46,68]],
[[28,24,30,24], [10, 6,16,17], [4,24,48,72]],
[[28,28,28,28], [11, 6,19,16], [4,28,52,76]],
[[26,30,28,28], [13, 6,21,18], [4,28,54,80]],
[[26,28,26,26], [14, 7,25,21], [4,28,56,84]],
[[26,28,28,30], [16, 8,25,20], [4,32,60,88]],
[[26,28,30,28], [17, 8,25,23], [4,26,48,70,92]],
[[28,28,24,30], [17, 9,34,23], [4,24,48,72,96]],
[[28,30,30,30], [18, 9,30,25], [4,28,52,76,100]],
[[28,30,30,30], [20,10,32,27], [4,26,52,78,104]],
[[28,26,30,30], [21,12,35,29], [4,30,56,82,108]],
[[28,28,30,28], [23,12,37,34], [4,28,56,84,112]],
[[28,30,30,30], [25,12,40,34], [4,32,60,88,116]],
[[28,30,30,30], [26,13,42,35], [4,24,48,72,96,120]],
[[28,30,30,30], [28,14,45,38], [4,28,52,76,100,124]],
[[28,30,30,30], [29,15,48,40], [4,24,50,76,102,128]],
[[28,30,30,30], [31,16,51,43], [4,28,54,80,106,132]],
[[28,30,30,30], [33,17,54,45], [4,32,58,84,110,136]],
[[28,30,30,30], [35,18,57,48], [4,28,56,84,112,140]],
[[28,30,30,30], [37,19,60,51], [4,32,60,88,116,144]],
[[28,30,30,30], [38,19,63,53], [4,28,52,76,100,124,148]],
[[28,30,30,30], [40,20,66,56], [4,22,48,74,100,126,152]],
[[28,30,30,30], [43,21,70,59], [4,26,52,78,104,130,156]],
[[28,30,30,30], [45,22,74,62], [4,30,56,82,108,134,160]],
[[28,30,30,30], [47,24,77,65], [4,24,52,80,108,136,164]],
[[28,30,30,30], [49,25,81,68], [4,28,56,84,112,140,168]]];
// mode constants (cf. Table 2 in JIS X 0510:2004 p. 16)
var MODE_TERMINATOR = 0;
var MODE_NUMERIC = 1, MODE_ALPHANUMERIC = 2, MODE_OCTET = 4, MODE_KANJI = 8;
// validation regexps
var NUMERIC_REGEXP = /^\d*$/;
var ALPHANUMERIC_REGEXP = /^[A-Za-z0-9 $%*+\-./:]*$/;
var ALPHANUMERIC_OUT_REGEXP = /^[A-Z0-9 $%*+\-./:]*$/;
// ECC levels (cf. Table 22 in JIS X 0510:2004 p. 45)
var ECCLEVEL_L = 1, ECCLEVEL_M = 0, ECCLEVEL_Q = 3, ECCLEVEL_H = 2;
// GF(2^8)-to-integer mapping with a reducing polynomial x^8+x^4+x^3+x^2+1
// invariant: GF256_MAP[GF256_INVMAP[i]] == i for all i in [1,256)
var GF256_MAP = [], GF256_INVMAP = [-1];
for (var i = 0, v = 1; i < 255; ++i) {
GF256_MAP.push(v);
GF256_INVMAP[v] = i;
v = (v * 2) ^ (v >= 128 ? 0x11d : 0);
}
// generator polynomials up to degree 30
// (should match with polynomials in JIS X 0510:2004 Appendix A)
//
// generator polynomial of degree K is product of (x-\alpha^0), (x-\alpha^1),
// ..., (x-\alpha^(K-1)). by convention, we omit the K-th coefficient (always 1)
// from the result; also other coefficients are written in terms of the exponent
// to \alpha to avoid the redundant calculation. (see also calculateecc below.)
var GF256_GENPOLY = [[]];
for (var i = 0; i < 30; ++i) {
var prevpoly = GF256_GENPOLY[i], poly = [];
for (var j = 0; j <= i; ++j) {
var a = (j < i ? GF256_MAP[prevpoly[j]] : 0);
var b = GF256_MAP[(i + (prevpoly[j-1] || 0)) % 255];
poly.push(GF256_INVMAP[a ^ b]);
}
GF256_GENPOLY.push(poly);
}
// alphanumeric character mapping (cf. Table 5 in JIS X 0510:2004 p. 19)
var ALPHANUMERIC_MAP = {};
for (var i = 0; i < 45; ++i) {
ALPHANUMERIC_MAP['0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:'.charAt(i)] = i;
}
// mask functions in terms of row # and column #
// (cf. Table 20 in JIS X 0510:2004 p. 42)
var MASKFUNCS = [
function(i,j) { return (i+j) % 2 == 0; },
function(i,j) { return i % 2 == 0; },
function(i,j) { return j % 3 == 0; },
function(i,j) { return (i+j) % 3 == 0; },
function(i,j) { return (((i/2)|0) + ((j/3)|0)) % 2 == 0; },
function(i,j) { return (i*j) % 2 + (i*j) % 3 == 0; },
function(i,j) { return ((i*j) % 2 + (i*j) % 3) % 2 == 0; },
function(i,j) { return ((i+j) % 2 + (i*j) % 3) % 2 == 0; }];
// returns true when the version information has to be embeded.
var needsverinfo = function(ver) { return ver > 6; };
// returns the size of entire QR code for given version.
var getsizebyver = function(ver) { return 4 * ver + 17; };
// returns the number of bits available for code words in this version.
var nfullbits = function(ver) {
/*
* |<--------------- n --------------->|
* | |<----- n-17 ---->| |
* +-------+ ///+-------+ ----
* | | ///| | ^
* | 9x9 | @@@@@ ///| 9x8 | |
* | | # # # @5x5@ # # # | | |
* +-------+ @@@@@ +-------+ |
* # ---|
* ^ |
* # |
* @@@@@ @@@@@ @@@@@ | n
* @5x5@ @5x5@ @5x5@ n-17
* @@@@@ @@@@@ @@@@@ | |
* # | |
* ////// v |
* //////# ---|
* +-------+ @@@@@ @@@@@ |
* | | @5x5@ @5x5@ |
* | 8x9 | @@@@@ @@@@@ |
* | | v
* +-------+ ----
*
* when the entire code has n^2 modules and there are m^2-3 alignment
* patterns, we have:
* - 225 (= 9x9 + 9x8 + 8x9) modules for finder patterns and
* format information;
* - 2n-34 (= 2(n-17)) modules for timing patterns;
* - 36 (= 3x6 + 6x3) modules for version information, if any;
* - 25m^2-75 (= (m^2-3)(5x5)) modules for alignment patterns
* if any, but 10m-20 (= 2(m-2)x5) of them overlaps with
* timing patterns.
*/
var v = VERSIONS[ver];
var nbits = 16*ver*ver + 128*ver + 64; // finder, timing and format info.
if (needsverinfo(ver)) nbits -= 36; // version information
if (v[2].length) { // alignment patterns
nbits -= 25 * v[2].length * v[2].length - 10 * v[2].length - 55;
}
return nbits;
};
// returns the number of bits available for data portions (i.e. excludes ECC
// bits but includes mode and length bits) in this version and ECC level.
var ndatabits = function(ver, ecclevel) {
var nbits = nfullbits(ver) & ~7; // no sub-octet code words
var v = VERSIONS[ver];
nbits -= 8 * v[0][ecclevel] * v[1][ecclevel]; // ecc bits
return nbits;
}
// returns the number of bits required for the length of data.
// (cf. Table 3 in JIS X 0510:2004 p. 16)
var ndatalenbits = function(ver, mode) {
switch (mode) {
case MODE_NUMERIC: return (ver < 10 ? 10 : ver < 27 ? 12 : 14);
case MODE_ALPHANUMERIC: return (ver < 10 ? 9 : ver < 27 ? 11 : 13);
case MODE_OCTET: return (ver < 10 ? 8 : 16);
case MODE_KANJI: return (ver < 10 ? 8 : ver < 27 ? 10 : 12);
}
};
// returns the maximum length of data possible in given configuration.
var getmaxdatalen = function(ver, mode, ecclevel) {
var nbits = ndatabits(ver, ecclevel) - 4 - ndatalenbits(ver, mode); // 4 for mode bits
switch (mode) {
case MODE_NUMERIC:
return ((nbits/10) | 0) * 3 + (nbits%10 < 4 ? 0 : nbits%10 < 7 ? 1 : 2);
case MODE_ALPHANUMERIC:
return ((nbits/11) | 0) * 2 + (nbits%11 < 6 ? 0 : 1);
case MODE_OCTET:
return (nbits/8) | 0;
case MODE_KANJI:
return (nbits/13) | 0;
}
};
// checks if the given data can be encoded in given mode, and returns
// the converted data for the further processing if possible. otherwise
// returns null.
//
// this function does not check the length of data; it is a duty of
// encode function below (as it depends on the version and ECC level too).
var validatedata = function(mode, data) {
switch (mode) {
case MODE_NUMERIC:
if (!data.match(NUMERIC_REGEXP)) return null;
return data;
case MODE_ALPHANUMERIC:
if (!data.match(ALPHANUMERIC_REGEXP)) return null;
return data.toUpperCase();
case MODE_OCTET:
if (typeof data === 'string') { // encode as utf-8 string
var newdata = [];
for (var i = 0; i < data.length; ++i) {
var ch = data.charCodeAt(i);
if (ch < 0x80) {
newdata.push(ch);
} else if (ch < 0x800) {
newdata.push(0xc0 | (ch >> 6),
0x80 | (ch & 0x3f));
} else if (ch < 0x10000) {
newdata.push(0xe0 | (ch >> 12),
0x80 | ((ch >> 6) & 0x3f),
0x80 | (ch & 0x3f));
} else {
newdata.push(0xf0 | (ch >> 18),
0x80 | ((ch >> 12) & 0x3f),
0x80 | ((ch >> 6) & 0x3f),
0x80 | (ch & 0x3f));
}
}
return newdata;
} else {
return data;
}
}
};
// returns the code words (sans ECC bits) for given data and configurations.
// requires data to be preprocessed by validatedata. no length check is
// performed, and everything has to be checked before calling this function.
var encode = function(ver, mode, data, maxbuflen) {
var buf = [];
var bits = 0, remaining = 8;
var datalen = data.length;
// this function is intentionally no-op when n=0.
var pack = function(x, n) {
if (n >= remaining) {
buf.push(bits | (x >> (n -= remaining)));
while (n >= 8) buf.push((x >> (n -= 8)) & 255);
bits = 0;
remaining = 8;
}
if (n > 0) bits |= (x & ((1 << n) - 1)) << (remaining -= n);
};
var nlenbits = ndatalenbits(ver, mode);
pack(mode, 4);
pack(datalen, nlenbits);
switch (mode) {
case MODE_NUMERIC:
for (var i = 2; i < datalen; i += 3) {
pack(parseInt(data.substring(i-2,i+1), 10), 10);
}
pack(parseInt(data.substring(i-2), 10), [0,4,7][datalen%3]);
break;
case MODE_ALPHANUMERIC:
for (var i = 1; i < datalen; i += 2) {
pack(ALPHANUMERIC_MAP[data.charAt(i-1)] * 45 +
ALPHANUMERIC_MAP[data.charAt(i)], 11);
}
if (datalen % 2 == 1) {
pack(ALPHANUMERIC_MAP[data.charAt(i-1)], 6);
}
break;
case MODE_OCTET:
for (var i = 0; i < datalen; ++i) {
pack(data[i], 8);
}
break;
};
// final bits. it is possible that adding terminator causes the buffer
// to overflow, but then the buffer truncated to the maximum size will
// be valid as the truncated terminator mode bits and padding is
// identical in appearance (cf. JIS X 0510:2004 sec 8.4.8).
pack(MODE_TERMINATOR, 4);
if (remaining < 8) buf.push(bits);
// the padding to fill up the remaining space. we should not add any
// words when the overflow already occurred.
while (buf.length + 1 < maxbuflen) buf.push(0xec, 0x11);
if (buf.length < maxbuflen) buf.push(0xec);
return buf;
};
// calculates ECC code words for given code words and generator polynomial.
//
// this is quite similar to CRC calculation as both Reed-Solomon and CRC use
// the certain kind of cyclic codes, which is effectively the division of
// zero-augumented polynomial by the generator polynomial. the only difference
// is that Reed-Solomon uses GF(2^8), instead of CRC's GF(2), and Reed-Solomon
// uses the different generator polynomial than CRC's.
var calculateecc = function(poly, genpoly) {
var modulus = poly.slice(0);
var polylen = poly.length, genpolylen = genpoly.length;
for (var i = 0; i < genpolylen; ++i) modulus.push(0);
for (var i = 0; i < polylen; ) {
var quotient = GF256_INVMAP[modulus[i++]];
if (quotient >= 0) {
for (var j = 0; j < genpolylen; ++j) {
modulus[i+j] ^= GF256_MAP[(quotient + genpoly[j]) % 255];
}
}
}
return modulus.slice(polylen);
};
// auguments ECC code words to given code words. the resulting words are
// ready to be encoded in the matrix.
//
// the much of actual augumenting procedure follows JIS X 0510:2004 sec 8.7.
// the code is simplified using the fact that the size of each code & ECC
// blocks is almost same; for example, when we have 4 blocks and 46 data words
// the number of code words in those blocks are 11, 11, 12, 12 respectively.
var augumenteccs = function(poly, nblocks, genpoly) {
var subsizes = [];
var subsize = (poly.length / nblocks) | 0, subsize0 = 0;
var pivot = nblocks - poly.length % nblocks;
for (var i = 0; i < pivot; ++i) {
subsizes.push(subsize0);
subsize0 += subsize;
}
for (var i = pivot; i < nblocks; ++i) {
subsizes.push(subsize0);
subsize0 += subsize+1;
}
subsizes.push(subsize0);
var eccs = [];
for (var i = 0; i < nblocks; ++i) {
eccs.push(calculateecc(poly.slice(subsizes[i], subsizes[i+1]), genpoly));
}
var result = [];
var nitemsperblock = (poly.length / nblocks) | 0;
for (var i = 0; i < nitemsperblock; ++i) {
for (var j = 0; j < nblocks; ++j) {
result.push(poly[subsizes[j] + i]);
}
}
for (var j = pivot; j < nblocks; ++j) {
result.push(poly[subsizes[j+1] - 1]);
}
for (var i = 0; i < genpoly.length; ++i) {
for (var j = 0; j < nblocks; ++j) {
result.push(eccs[j][i]);
}
}
return result;
};
// auguments BCH(p+q,q) code to the polynomial over GF(2), given the proper
// genpoly. the both input and output are in binary numbers, and unlike
// calculateecc genpoly should include the 1 bit for the highest degree.
//
// actual polynomials used for this procedure are as follows:
// - p=10, q=5, genpoly=x^10+x^8+x^5+x^4+x^2+x+1 (JIS X 0510:2004 Appendix C)
// - p=18, q=6, genpoly=x^12+x^11+x^10+x^9+x^8+x^5+x^2+1 (ibid. Appendix D)
var augumentbch = function(poly, p, genpoly, q) {
var modulus = poly << q;
for (var i = p - 1; i >= 0; --i) {
if ((modulus >> (q+i)) & 1) modulus ^= genpoly << i;
}
return (poly << q) | modulus;
};
// creates the base matrix for given version. it returns two matrices, one of
// them is the actual one and the another represents the "reserved" portion
// (e.g. finder and timing patterns) of the matrix.
//
// some entries in the matrix may be undefined, rather than 0 or 1. this is
// intentional (no initialization needed!), and putdata below will fill
// the remaining ones.
var makebasematrix = function(ver) {
var v = VERSIONS[ver], n = getsizebyver(ver);
var matrix = [], reserved = [];
for (var i = 0; i < n; ++i) {
matrix.push([]);
reserved.push([]);
}
var blit = function(y, x, h, w, bits) {
for (var i = 0; i < h; ++i) {
for (var j = 0; j < w; ++j) {
matrix[y+i][x+j] = (bits[i] >> j) & 1;
reserved[y+i][x+j] = 1;
}
}
};
// finder patterns and a part of timing patterns
// will also mark the format information area (not yet written) as reserved.
blit(0, 0, 9, 9, [0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x17f, 0x00, 0x40]);
blit(n-8, 0, 8, 9, [0x100, 0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x7f]);
blit(0, n-8, 9, 8, [0xfe, 0x82, 0xba, 0xba, 0xba, 0x82, 0xfe, 0x00, 0x00]);
// the rest of timing patterns
for (var i = 9; i < n-8; ++i) {
matrix[6][i] = matrix[i][6] = ~i & 1;
reserved[6][i] = reserved[i][6] = 1;
}
// alignment patterns
var aligns = v[2], m = aligns.length;
for (var i = 0; i < m; ++i) {
var minj = (i==0 || i==m-1 ? 1 : 0), maxj = (i==0 ? m-1 : m);
for (var j = minj; j < maxj; ++j) {
blit(aligns[i], aligns[j], 5, 5, [0x1f, 0x11, 0x15, 0x11, 0x1f]);
}
}
// version information
if (needsverinfo(ver)) {
var code = augumentbch(ver, 6, 0x1f25, 12);
var k = 0;
for (var i = 0; i < 6; ++i) {
for (var j = 0; j < 3; ++j) {
matrix[i][(n-11)+j] = matrix[(n-11)+j][i] = (code >> k++) & 1;
reserved[i][(n-11)+j] = reserved[(n-11)+j][i] = 1;
}
}
}
return {matrix: matrix, reserved: reserved};
};
// fills the data portion (i.e. unmarked in reserved) of the matrix with given
// code words. the size of code words should be no more than available bits,
// and remaining bits are padded to 0 (cf. JIS X 0510:2004 sec 8.7.3).
var putdata = function(matrix, reserved, buf) {
var n = matrix.length;
var k = 0, dir = -1;
for (var i = n-1; i >= 0; i -= 2) {
if (i == 6) --i; // skip the entire timing pattern column
var jj = (dir < 0 ? n-1 : 0);
for (var j = 0; j < n; ++j) {
for (var ii = i; ii > i-2; --ii) {
if (!reserved[jj][ii]) {
// may overflow, but (undefined >> x)
// is 0 so it will auto-pad to zero.
matrix[jj][ii] = (buf[k >> 3] >> (~k&7)) & 1;
++k;
}
}
jj += dir;
}
dir = -dir;
}
return matrix;
};
// XOR-masks the data portion of the matrix. repeating the call with the same
// arguments will revert the prior call (convenient in the matrix evaluation).
var maskdata = function(matrix, reserved, mask) {
var maskf = MASKFUNCS[mask];
var n = matrix.length;
for (var i = 0; i < n; ++i) {
for (var j = 0; j < n; ++j) {
if (!reserved[i][j]) matrix[i][j] ^= maskf(i,j);
}
}
return matrix;
}
// puts the format information.
var putformatinfo = function(matrix, reserved, ecclevel, mask) {
var n = matrix.length;
var code = augumentbch((ecclevel << 3) | mask, 5, 0x537, 10) ^ 0x5412;
for (var i = 0; i < 15; ++i) {
var r = [0,1,2,3,4,5,7,8,n-7,n-6,n-5,n-4,n-3,n-2,n-1][i];
var c = [n-1,n-2,n-3,n-4,n-5,n-6,n-7,n-8,7,5,4,3,2,1,0][i];
matrix[r][8] = matrix[8][c] = (code >> i) & 1;
// we don't have to mark those bits reserved; always done
// in makebasematrix above.
}
return matrix;
};
// evaluates the resulting matrix and returns the score (lower is better).
// (cf. JIS X 0510:2004 sec 8.8.2)
//
// the evaluation procedure tries to avoid the problematic patterns naturally
// occuring from the original matrix. for example, it penaltizes the patterns
// which just look like the finder pattern which will confuse the decoder.
// we choose the mask which results in the lowest score among 8 possible ones.
//
// note: zxing seems to use the same procedure and in many cases its choice
// agrees to ours, but sometimes it does not. practically it doesn't matter.
var evaluatematrix = function(matrix) {
// N1+(k-5) points for each consecutive row of k same-colored modules,
// where k >= 5. no overlapping row counts.
var PENALTY_CONSECUTIVE = 3;
// N2 points for each 2x2 block of same-colored modules.
// overlapping block does count.
var PENALTY_TWOBYTWO = 3;
// N3 points for each pattern with >4W:1B:1W:3B:1W:1B or
// 1B:1W:3B:1W:1B:>4W, or their multiples (e.g. highly unlikely,
// but 13W:3B:3W:9B:3W:3B counts).
var PENALTY_FINDERLIKE = 40;
// N4*k points for every (5*k)% deviation from 50% black density.
// i.e. k=1 for 55~60% and 40~45%, k=2 for 60~65% and 35~40%, etc.
var PENALTY_DENSITY = 10;
var evaluategroup = function(groups) { // assumes [W,B,W,B,W,...,B,W]
var score = 0;
for (var i = 0; i < groups.length; ++i) {
if (groups[i] >= 5) score += PENALTY_CONSECUTIVE + (groups[i]-5);
}
for (var i = 5; i < groups.length; i += 2) {
var p = groups[i];
if (groups[i-1] == p && groups[i-2] == 3*p && groups[i-3] == p &&
groups[i-4] == p && (groups[i-5] >= 4*p || groups[i+1] >= 4*p)) {
// this part differs from zxing...
score += PENALTY_FINDERLIKE;
}
}
return score;
};
var n = matrix.length;
var score = 0, nblacks = 0;
for (var i = 0; i < n; ++i) {
var row = matrix[i];
var groups;
// evaluate the current row
groups = [0]; // the first empty group of white
for (var j = 0; j < n; ) {
var k;
for (k = 0; j < n && row[j]; ++k) ++j;
groups.push(k);
for (k = 0; j < n && !row[j]; ++k) ++j;
groups.push(k);
}
score += evaluategroup(groups);
// evaluate the current column
groups = [0];
for (var j = 0; j < n; ) {
var k;
for (k = 0; j < n && matrix[j][i]; ++k) ++j;
groups.push(k);
for (k = 0; j < n && !matrix[j][i]; ++k) ++j;
groups.push(k);
}
score += evaluategroup(groups);
// check the 2x2 box and calculate the density
var nextrow = matrix[i+1] || [];
nblacks += row[0];
for (var j = 1; j < n; ++j) {
var p = row[j];
nblacks += p;
// at least comparison with next row should be strict...
if (row[j-1] == p && nextrow[j] === p && nextrow[j-1] === p) {
score += PENALTY_TWOBYTWO;
}
}
}
score += PENALTY_DENSITY * ((Math.abs(nblacks / n / n - 0.5) / 0.05) | 0);
return score;
};
// returns the fully encoded QR code matrix which contains given data.
// it also chooses the best mask automatically when mask is -1.
var generate = function(data, ver, mode, ecclevel, mask) {
var v = VERSIONS[ver];
var buf = encode(ver, mode, data, ndatabits(ver, ecclevel) >> 3);
buf = augumenteccs(buf, v[1][ecclevel], GF256_GENPOLY[v[0][ecclevel]]);
var result = makebasematrix(ver);
var matrix = result.matrix, reserved = result.reserved;
putdata(matrix, reserved, buf);
if (mask < 0) {
// find the best mask
maskdata(matrix, reserved, 0);
putformatinfo(matrix, reserved, ecclevel, 0);
var bestmask = 0, bestscore = evaluatematrix(matrix);
maskdata(matrix, reserved, 0);
for (mask = 1; mask < 8; ++mask) {
maskdata(matrix, reserved, mask);
putformatinfo(matrix, reserved, ecclevel, mask);
var score = evaluatematrix(matrix);
if (bestscore > score) {
bestscore = score;
bestmask = mask;
}
maskdata(matrix, reserved, mask);
}
mask = bestmask;
}
maskdata(matrix, reserved, mask);
putformatinfo(matrix, reserved, ecclevel, mask);
return matrix;
};
// the public interface is trivial; the options available are as follows:
//
// - version: an integer in [1,40]. when omitted (or -1) the smallest possible
// version is chosen.
// - mode: one of 'numeric', 'alphanumeric', 'octet'. when omitted the smallest
// possible mode is chosen.
// - ecclevel: one of 'L', 'M', 'Q', 'H'. defaults to 'L'.
// - mask: an integer in [0,7]. when omitted (or -1) the best mask is chosen.
//
// for generate{HTML,PNG}:
//
// - modulesize: a number. this is a size of each modules in pixels, and
// defaults to 5px.
// - margin: a number. this is a size of margin in *modules*, and defaults to
// 4 (white modules). the specficiation mandates the margin no less than 4
// modules, so it is better not to alter this value unless you know what
// you're doing.
var QRCode = {
'generate': function(data, options) {
var MODES = {'numeric': MODE_NUMERIC, 'alphanumeric': MODE_ALPHANUMERIC,
'octet': MODE_OCTET};
var ECCLEVELS = {'L': ECCLEVEL_L, 'M': ECCLEVEL_M, 'Q': ECCLEVEL_Q,
'H': ECCLEVEL_H};
options = options || {};
var ver = options.version || -1;
var ecclevel = ECCLEVELS[(options.ecclevel || 'L').toUpperCase()];
var mode = options.mode ? MODES[options.mode.toLowerCase()] : -1;
var mask = 'mask' in options ? options.mask : -1;
if (mode < 0) {
if (typeof data === 'string') {
if (data.match(NUMERIC_REGEXP)) {
mode = MODE_NUMERIC;
} else if (data.match(ALPHANUMERIC_OUT_REGEXP)) {
// while encode supports case-insensitive
// encoding, we restrict the data to be
// uppercased when auto-selecting the mode.
mode = MODE_ALPHANUMERIC;
} else {
mode = MODE_OCTET;
}
} else {
mode = MODE_OCTET;
}
} else if (!(mode == MODE_NUMERIC || mode == MODE_ALPHANUMERIC ||
mode == MODE_OCTET)) {
throw 'invalid or unsupported mode';
}
data = validatedata(mode, data);
if (data === null) throw 'invalid data format';
if (ecclevel < 0 || ecclevel > 3) throw 'invalid ECC level';
if (ver < 0) {
for (ver = 1; ver <= 40; ++ver) {
if (data.length <= getmaxdatalen(ver, mode, ecclevel)) break;
}
if (ver > 40) throw 'too large data';
} else if (ver < 1 || ver > 40) {
throw 'invalid version';
}
if (mask != -1 && (mask < 0 || mask > 8)) throw 'invalid mask';
return generate(data, ver, mode, ecclevel, mask);
},
'generateHTML': function(data, options) {
options = options || {};
var matrix = QRCode['generate'](data, options);
var modsize = Math.max(options.modulesize || 5, 0.5);
var margin = Math.max(options.margin || 4, 0.0);
var e = document.createElement('div');
var n = matrix.length;
var html = ['<table border="0" cellspacing="0" cellpadding="0" style="border:' +
modsize*margin + 'px solid #fff;background:#fff">'];
for (var i = 0; i < n; ++i) {
html.push('<tr>');
for (var j = 0; j < n; ++j) {
html.push('<td style="width:' + modsize + 'px;height:' + modsize + 'px' +
(matrix[i][j] ? ';background:#000' : '') + '"></td>');
}
html.push('</tr>');
}
e.className = 'qrcode';
e.innerHTML = html.join('') + '</table>';
return e;
},
'generatePNG': function(data, options) {
options = options || {};
var matrix = QRCode['generate'](data, options);
var modsize = Math.max(options.modulesize || 5, 0.5);
var margin = Math.max(options.margin || 4, 0.0);
var n = matrix.length;
var size = modsize * (n + 2 * margin);
var canvas = document.createElement('canvas'), context;
canvas.width = canvas.height = size;
context = canvas.getContext('2d');
if (!context) throw 'canvas support is needed for PNG output';
context.fillStyle = '#fff';
context.fillRect(0, 0, size, size);
context.fillStyle = '#000';
for (var i = 0; i < n; ++i) {
for (var j = 0; j < n; ++j) {
if (matrix[i][j]) {
context.fillRect(modsize * (margin + j),
modsize * (margin + i),
modsize, modsize);
}
}
}
//context.fillText('evaluation: ' + evaluatematrix(matrix), 10, 10);
return canvas.toDataURL();
}
};
return QRCode;
})();